
Electrum Documentation
Release 2.10

Thomas Voegtlin

Apr 10, 2018

Contents

1 GUI and beginners 3
1.1 Frequently Asked Questions . 3
1.2 Invoices . 8
1.3 Two Factor Authentication . 9
1.4 Multisig Wallets . 12
1.5 Cold Storage . 16

2 Advanced users 23
2.1 Command Line . 23
2.2 Using cold storage with the command line . 25
2.3 How to accept Bitcoin on a website using Electrum . 26
2.4 How to split your coins using Electrum in case of a fork . 31
2.5 Using Electrum Through Tor . 36

3 For developers 41
3.1 The Python Console . 41
3.2 Simple Payment Verification . 42
3.3 Electrum Seed Version System . 42
3.4 Electrum protocol specification . 45
3.5 Serialization of unsigned or partially signed transactions . 50

i

ii

Electrum Documentation, Release 2.10

Electrum is a lightweight Bitcoin wallet.

Contents 1

Electrum Documentation, Release 2.10

2 Contents

CHAPTER 1

GUI and beginners

1.1 Frequently Asked Questions

1.1.1 How does Electrum work?

Electrum’s focus is speed, with low resource usage and simplifying Bitcoin. Startup times are instant because it
operates in conjunction with high-performance servers that handle the most complicated parts of the Bitcoin system.

1.1.2 Does Electrum trust servers?

Not really; the Electrum client never sends private keys to the servers. In addition, it verifies the information reported
by servers, using a technique called Simple Payment Verification

1.1.3 What is the seed?

The seed is a random phrase that is used to generate your private keys.

Example:

slim sugar lizard predict state cute awkward asset inform blood civil sugar

Your wallet can be entirely recovered from its seed. For this, select the “restore wallet” option in the startup.

1.1.4 How secure is the seed?

The seed phrase created by Electrum has 132 bits of entropy. This means that it provides the same level of security as
a Bitcoin private key (of length 256 bits). Indeed, an elliptic curve key of length n provides n/2 bits of security.

3

Electrum Documentation, Release 2.10

1.1.5 I have forgotten my password. What can I do?

It is not possible to recover your password. However, you can restore your wallet from its seed phrase and choose a
new password. If you lose both your password and your seed, there is no way to recover your money. This is why we
ask you to save your seed phrase on paper.

To restore your wallet from its seed phrase, create a new wallet, select the type, choose “I already have a seed” and
proceed to input your seed phrase.

1.1.6 My transaction has been unconfirmed for a long time. What can I do?

Bitcoin transactions become “confirmed” when miners accept to write them in the Bitcoin blockchain. In general, the
speed of confirmation depends on the fee you attach to your transaction; miners prioritize transactions that pay the
highest fees.

Recent versions of Electrum use “dynamic fees” in order to make sure that the fee you pay with your transaction is
adequate. This feature is enabled by default in recent versions of Electrum.

If you have made a transaction that is unconfirmed, you can:

• Wait for a long time. Eventually, your transaction will either be confirmed or cancelled. This might take several
days.

• Increase the transaction fee. This is only possible for “replaceable” transactions. To create this type of transac-
tion, you must have checked “Replaceable” on the send tab before sending the transaction. If you’re not seeing
the “Replaceable” option on the send tab go to Tools menu > Preferences > Fees tab and set “Propose Replace-
By-Fee” to “Always”. Transactions that are replaceable have the word “Replaceable” in the date column on the
history tab. To increase the fee of a replaceable transaction right click on its entry on the history tab and choose
“Increase Fee”. Set an appropriate fee and click on “OK”. A window will popup with the unsigned transaction.
Click on “Sign” and then “Broadcast”.

• Create a “Child Pays for Parent” transaction. A CPFP is a new transaction that pays a high fee in order to
compensate for the small fee of its parent transaction. It can be done by the recipient of the funds, or by the
sender, if the transaction has a change output. To create a CPFP transaction right click on the unconfirmed
transaction on the history tab and choose “Child pays for parent”. Set an appropriate fee and click on “OK”. A
window will popup with the unsigned transaction. Click on “Sign” and then “Broadcast”.

1.1.7 What does it mean to “freeze” an address in Electrum?

When you freeze an address, the funds in that address will not be used for sending bitcoins. You cannot send bitcoins
if you don’t have enough funds in the non-frozen addresses.

1.1.8 How is the wallet encrypted?

Electrum uses two separate levels of encryption:

• Your seed and private keys are encrypted using AES-256-CBC. The private keys are decrypted only briefly,
when you need to sign a transaction; for this you need to enter your password. This is done in order to minimize
the amount of time during which sensitive information is unencrypted in your computer’s memory.

• In addition, your wallet file may be encrypted on disk. Note that the wallet information will remain unencrypted
in the memory of your computer for the duration of your session. If a wallet is encrypted, then its password will
be required in order to open it. Note that the password will not be kept in memory; Electrum does not need it in
order to save the wallet on disk, because it uses asymmetric encryption (ECIES).

4 Chapter 1. GUI and beginners

Electrum Documentation, Release 2.10

Wallet file encryption is activated by default since version 2.8. It is intended to protect your privacy, but also to prevent
you from requesting bitcoins on a wallet that you do not control.

1.1.9 Does Electrum support cold wallets?

Yes, see Cold Storage.

1.1.10 Can I import private keys from other Bitcoin clients?

In Electrum 2.0, you cannot import private keys in a wallet that has a seed. You should sweep them instead.

If you want to import private keys and not sweep them, you need to create a special wallet that does not have a seed.
For this, create a new wallet, select “restore”, and instead of typing your seed, type a list of private keys, or a list of
addresses if you want to create a watching-only wallet.

You will need to back up this wallet, because it cannot be recovered from a seed.

1.1.11 Can I sweep private keys from other Bitcoin clients?

Sweeping private keys means to send all the bitcoins they control to an existing address in your wallet. The private
keys you sweep do not become a part of your wallet. Instead, all the bitcoins they control are sent to an address that
has been deterministically generated from your wallet seed.

1.1. Frequently Asked Questions 5

Electrum Documentation, Release 2.10

To sweep private keys, go to the Wallet menu -> Private Keys -> Sweep. Enter the private keys in the appropriate field.
Leave the “Address” field unchanged. That is the destination address and it will be from your existing electrum wallet.
Click on “Sweep”. It’ll now take you to the send tab where you can set an appropriate fee and then click on “Send” to
send the coins to your wallet.

1.1.12 Where is my wallet file located?

The default wallet file is called default_wallet, which is created when you first run the application and is located in the
/wallets folder.

On Windows:

• Show hidden files

• Go to \Users\YourUserName\AppData\Roaming\Electrum\wallets (or %APPDATA%\Electrum\wallets)

On Mac:

• Open Finder

• Go to folder (shift+cmd+G) and type ~/.electrum

On Linux:

• Home Folder

• Go -> Location and type ~/.electrum

1.1.13 Can I do bulk payments with Electrum?

You can create a transaction with several outputs. In the GUI, type each address and amount on a line, separated by a
comma.

6 Chapter 1. GUI and beginners

Electrum Documentation, Release 2.10

Amounts are in the current unit set in the client. The total is shown in the GUI.

You can also import a CSV file in the “Pay to” field, by clicking on the folder icon.

1.1.14 Can Electrum create and sign raw transactions?

Electrum lets you create and sign raw transactions right from the user interface using a form.

1.1.15 Electrum freezes when I try to send bitcoins.

This might happen if you are trying to spend a large number of transaction outputs (for example, if you have collected
hundreds of donations from a Bitcoin faucet). When you send Bitcoins, Electrum looks for unspent coins that are in
your wallet in order to create a new transaction. Unspent coins can have different values, much like physical coins and
bills.

If this happens, you should consolidate your transaction inputs by sending smaller amounts of bitcoins to one of your
wallet addresses; this would be the equivalent of exchanging a stack of nickels for a dollar bill.

1.1.16 What is the gap limit?

The gap limit is the maximum number of consecutive unused addresses in your deterministic sequence of addresses.
Electrum uses it in order to stop looking for addresses. In Electrum 2.0, it is set to 20 by default, so the client will get
all addresses until 20 unused addresses are found.

1.1. Frequently Asked Questions 7

Electrum Documentation, Release 2.10

1.1.17 How can I pre-generate new addresses?

Electrum will generate new addresses as you use them, until it hits the gap limit.

If you need to pre-generate more addresses, you can do so by typing wallet.create_new_address(False) in the console.
This command will generate one new address. Note that the address will be shown with a red background in the
address tab to indicate that it is beyond the gap limit. The red color will remain until the gap is filled.

WARNING: Addresses beyond the gap limit will not automatically be recovered from the seed. To recover them will
require either increasing the client’s gap limit or generating new addresses until the used addresses are found.

If you wish to generate more than one address, you can use a “for” loop. For example, if you wanted to generate 50
addresses, you could do this:

for x in range(0, 50):
print wallet.create_new_address(False)

1.1.18 How do I upgrade Electrum?

Warning: always save your wallet seed on paper before doing an upgrade.

To upgrade Electrum, just install the most recent version. The way to do this will depend on your OS.

Note that your wallet files are stored separately from the software, so you can safely remove the old version of the
software if your OS does not do it for you.

Some Electrum upgrades will modify the format of your wallet files.

For this reason, it is not recommended to downgrade Electrum to an older version once you have opened your wallet
file with the new version. The older version will not always be able to read the new wallet file.

The following issues should be considered when upgrading Electrum 1.x wallets to Electrum 2.x:

• Electrum 2.x will need to regenerate all of your addresses during the upgrade process. Please allow it time to
complete, and expect it to take a little longer than usual for Electrum to be ready.

• The contents of your wallet file will be replaced with an Electrum 2 wallet. This means Electrum 1.x will no
longer be able to use your wallet once the upgrade is complete.

• The “Addresses” tab will not show any addresses the first time you launch Electrum 2. This is expected behavior.
Restart Electrum 2 after the upgrade is complete and your addresses will be available.

• Offline copies of Electrum will not show the addresses at all because it cannot synchronize with the network. You
can force an offline generation of a few addresses by typing the following into the Console: wallet.synchronize().
When it’s complete, restart Electrum and your addresses will once again be available.

1.2 Invoices

Invoices are Payment Requests signed by their requestor.

When you click on a bitcoin: link, a URL is passed to electrum:

electrum "bitcoin:1KLxqw4MA5NkG6YP1N4S14akDFCP1vQrKu?amount=1.0&r=https%3A%2F
→˓%2Fbitpay.com%2Fi%2FXxaGtEpRSqckRnhsjZwtrA"

This opens the send tab with the payment request:

8 Chapter 1. GUI and beginners

Electrum Documentation, Release 2.10

The green color in the “Pay To” field means that the payment request was signed by bitpay.com’s certificate, and that
Electrum verified the chain of signatures.

Note that the “send” tab contains a list of invoices and their status.

1.3 Two Factor Authentication

Electrum offers two-factor authenticated wallets, with a remote server acting to co-sign transactions, adding another
level of security in the event of your computer being compromised.

The remote server in question is a service offered by TrustedCoin. Here is a guide on how it works.

1.3. Two Factor Authentication 9

https://api.trustedcoin.com/#/electrum-help

Electrum Documentation, Release 2.10

1.3.1 Creating a Wallet

10 Chapter 1. GUI and beginners

Electrum Documentation, Release 2.10

1.3.2 Restoring from seed

Even if TrustedCoin is compromised or taken offline, your coins are secure as long as you still have the seed of your
wallet. Your seed contains two master private keys in a 2-of-3 security scheme. In addition, the third master public
key can be derived from your seed, ensuring that your wallet addresses can be restored. In order to restore your wallet
from seed, select “wallet with two factor authentication”, as this tells Electrum to use this special variety of seed for
restoring your wallet.

1.3. Two Factor Authentication 11

Electrum Documentation, Release 2.10

Note: The “restore” option should be used only if you no longer want to use TrustedCoin, or if there is a problem with
the service. Once you have restored your wallet in this way, two of three factors are on your machine, negating the
special protection of this type of wallet.

1.4 Multisig Wallets

This tutorial shows how to create a 2 of 2 multisig wallet. A 2 of 2 multisig consists of 2 separate wallets (usually on
separate machines and potentially controlled by separate people) that have to be used in conjunction in order to access
the funds. Both wallets have the same set of Addresses.

• A common use-case for this is if you want to collaboratively control funds: maybe you and your friend run a
company together and certain funds should only be spendable if you both agree.

• Another one is security: One of the wallets can be on your main machine, while the other one is on a offline
machine. That way you make it very hard for an attacker or malware to steal your coins.

1.4.1 Create a pair of 2-of-2 wallets

Each cosigner needs to do this: In the menu select File->New, then select “Multi-signature wallet”. On the next screen,
select 2 of 2.

12 Chapter 1. GUI and beginners

Electrum Documentation, Release 2.10

After generating a seed (keep it safely!) you will need to provide the master public key of the other wallet.

1.4. Multisig Wallets 13

Electrum Documentation, Release 2.10

Put the master public key of the other wallet into the lower box. Of course when you create the other wallet, you put
the master public key of this one.

You will need to do this in parallel for the two wallets. Note that you can press cancel during this step, and reopen the
file later.

1.4.2 Receiving

Check that both wallets generate the same set of Addresses. You can now send to these Addresses (note they start with
a “3”) with any wallet that can send to P2SH Addresses.

1.4.3 Spending

To spend coins from a 2-of-2 wallet, two cosigners need to sign a transaction collaboratively.

To accomplish this, create a transaction using one of the wallets (by filling out the form on the “send” tab)

After signing, a window is shown with the transaction details.

14 Chapter 1. GUI and beginners

Electrum Documentation, Release 2.10

The transaction has to be sent to the second wallet.

For this you have multiple options:

• you can transfer the file on a usb stick

• you can use QR codes

• you can use a remote server, with the CosignerPool plugin.

Transfer a file

You can save the partially signed transaction to a file (using the “save” button), transfer that to the machine where the
second wallet is running (via usb stick, for example) and load it there (using Tools -> Load transaction -> from file)

Use QR-Code

There’s also a button showing a qr-code icon. Clicking that will display a qr-code containing the transaction that can
be scanned into the second wallet (Tools -> Load Transaction -> From QR Code)

Use the Cosigner Pool Plugin

For this to work the Plugin “Cosigner Pool” needs to be enabled (Tools -> Plugins) with both wallets.

1.4. Multisig Wallets 15

Electrum Documentation, Release 2.10

Once the plugin is enabled, you will see a button labeled “Send to cosigner”. Clicking it sends the partially signed
transaction to a central server. Note that the transaction is encrypted with your cosigner’s master public key.

When the cosigner wallet is started, it will get a notification that a partially signed transaction is available:

The transaction is encrypted with the cosigner’s master public key; the password is needed to decrypt it.

With all of the above methods, you can now add the seconds signature the the transaction (using the “sign” button). It
will then be broadcast to the network.

1.5 Cold Storage

This document shows how to create an offline wallet that holds your Bitcoins and a watching-only online wallet that is
used to view its history and to create transactions that have to be signed with the offline wallet before being broadcast
on the online one.

1.5.1 Create an offline wallet

Create a wallet on an offline machine, as per the usual process (file -> new) etc.

After creating the wallet, go to Wallet -> Information.

16 Chapter 1. GUI and beginners

Electrum Documentation, Release 2.10

The Master Public Key of your wallet is the string shown in this popup window. Transfer that key to your online
machine somehow.

1.5.2 Create a watching-only version of your wallet

On your online machine, open up Electrum and select File -> New/Restore. Enter a name for the wallet and select
“Standard wallet”.

Select “Use public or private keys”

1.5. Cold Storage 17

Electrum Documentation, Release 2.10

Paste your master public key in the box.

Click Next to complete the creation of your wallet. When you’re done, you should see a popup informing you that you
are opening a watching-only wallet.

18 Chapter 1. GUI and beginners

Electrum Documentation, Release 2.10

Then you should see the transaction history of your cold wallet.

1.5.3 Create an unsigned transaction

Go to the “send” tab on your online watching-only wallet, input the transaction data and press “Preview”. A window
pops up:

Press “save” and save the transaction file somewhere on your computer. Close the window and transfer the transaction
file to your offline machine (e.g. with a usb stick).

1.5.4 Get your transaction signed

On your offline wallet, select Tools -> Load transaction -> From file in the menu and select the transaction file created
in the previous step.

1.5. Cold Storage 19

Electrum Documentation, Release 2.10

Press “sign”. Once the transaction is signed, the Transaction ID appears in its designated field.

20 Chapter 1. GUI and beginners

Electrum Documentation, Release 2.10

Press save, store the file somewhere on your computer, and transfer it back to your online machine.

1.5.5 Broadcast your transaction

On your online machine, select Tools -> Load transaction -> From File from the menu. Select the signed transaction
file. In the window that opens up, press “broadcast”. The transaction will be broadcasted over the Bitcoin network.

1.5. Cold Storage 21

Electrum Documentation, Release 2.10

22 Chapter 1. GUI and beginners

CHAPTER 2

Advanced users

2.1 Command Line

Electrum has a powerful command line. This page will show you a few basic principles.

2.1.1 Using the inline help

To see the list of Electrum commands, type:

electrum help

To see the documentation for a command, type:

electrum help <command>

2.1.2 Magic words

The arguments passed to commands may be one of the following magic words: ! ? : and -.

• The exclamation mark ! is a shortcut that means ‘the maximum amount available’.

Example:

electrum payto 1JuiT4dM65d8vBt8qUYamnDmAMJ4MjjxRE !

Note that the transaction fee will be computed and deducted from the amount.

• A question mark ? means that you want the parameter to be prompted.

Example:

electrum signmessage 1JuiT4dM65d8vBt8qUYamnDmAMJ4MjjxRE ?

23

Electrum Documentation, Release 2.10

• Use a colon : if you want the prompted parameter to be hidden (not echoed in your terminal).

electrum importprivkey :

Note that you will be prompted twice in this example, first for the private key, then for your wallet password.

• A parameter replaced by a dash - will be read from standard input (in a pipe)

cat LICENCE | electrum signmessage 1JuiT4dM65d8vBt8qUYamnDmAMJ4MjjxRE -

2.1.3 Aliases

You can use DNS aliases in place of bitcoin addresses, in most commands.

electrum payto ecdsa.net !

2.1.4 Formatting outputs using jq

Command outputs are either simple strings or json structured data. A very useful utility is the ‘jq’ program. Install it
with:

sudo apt-get install jq

The following examples use it.

2.1.5 Examples

Sign and verify message

We may use a variable to store the signature, and verify it:

sig=$(cat LICENCE| electrum signmessage 1JuiT4dM65d8vBt8qUYamnDmAMJ4MjjxRE -)

And:

cat LICENCE | electrum verifymessage 1JuiT4dM65d8vBt8qUYamnDmAMJ4MjjxRE $sig -

Show the values of your unspents

The ‘listunspent’ command returns a list of dict objects, with various fields. Suppose we want to extract the ‘value’
field of each record. This can be achieved with the jq command:

electrum listunspent | jq 'map(.value)'

Select only incoming transactions from history

Incoming transactions have a positive ‘value’ field

electrum history | jq '.[] | select(.value>0)'

24 Chapter 2. Advanced users

Electrum Documentation, Release 2.10

Filter transactions by date

The following command selects transactions that were timestamped after a given date:

after=$(date -d '07/01/2015' +"%s")

electrum history | jq --arg after $after '.[] | select(.timestamp>($after|tonumber))'

Similarly, we may export transactions for a given time period:

before=$(date -d '08/01/2015' +"%s")

after=$(date -d '07/01/2015' +"%s")

electrum history | jq --arg before $before --arg after $after '.[] | select(.
→˓timestamp>($after|tonumber) and .timestamp<($before|tonumber))'

Encrypt and decrypt messages

First we need the public key of a wallet address:

pk=$(electrum getpubkeys 1JuiT4dM65d8vBt8qUYamnDmAMJ4MjjxRE| jq -r '.[0]')

Encrypt:

cat | electrum encrypt $pk -

Decrypt:

electrum decrypt $pk ?

Note: this command will prompt for the encrypted message, then for the wallet password

Export private keys and sweep coins

The following command will export the private keys of all wallet addresses that hold some bitcoins:

electrum listaddresses --funded | electrum getprivatekeys -

This will return a list of lists of private keys. In most cases, you want to get a simple list. This can be done by adding
a jq filer, as follows:

electrum listaddresses --funded | electrum getprivatekeys - | jq 'map(.[0])'

Finally, let us use this list of private keys as input to the sweep command:

electrum listaddresses --funded | electrum getprivatekeys - | jq 'map(.[0])' |
→˓electrum sweep - [destination address]

2.2 Using cold storage with the command line

This page will show you how to sign a transaction with an offline Electrum wallet, using the Command line.

2.2. Using cold storage with the command line 25

Electrum Documentation, Release 2.10

2.2.1 Create an unsigned transaction

With your online (watching-only) wallet, create an unsigned transaction:

electrum payto 1Cpf9zb5Rm5Z5qmmGezn6ERxFWvwuZ6UCx 0.1 --unsigned > unsigned.txn

The unsigned transaction is stored in a file named ‘unsigned.txn’. Note that the –unsigned option is not needed if you
use a watching-only wallet.

You may view it using:

cat unsigned.txn | electrum deserialize -

2.2.2 Sign the transaction

The serialization format of Electrum contains the master public key needed and key derivation, used by the offline
wallet to sign the transaction.

Thus we only need to pass the serialized transaction to the offline wallet:

cat unsigned.txn | electrum signtransaction - > signed.txn

The command will ask for your password, and save the signed transaction in ‘signed.txn’

2.2.3 Broadcast the transaction

Send your transaction to the Bitcoin network, using broadcast:

cat signed.txn | electrum broadcast -

If successful, the command will return the ID of the transaction.

2.3 How to accept Bitcoin on a website using Electrum

This tutorial will show you how to accept Bitcoin on a website with SSL signed payment requests. It is updated for
Electrum 2.6.

2.3.1 Requirements

• A webserver serving static HTML

• A SSL certificate (signed by a CA)

• Electrum version >= 2.6

2.3.2 Create and use your merchant wallet

Create a wallet on your protected machine, as you want to keep your cryptocurrency safe. If anybody compromise
your merchant server, s/he will be able to access read-only version of your wallet only and won’t be able to spent
currency.

26 Chapter 2. Advanced users

Electrum Documentation, Release 2.10

Please notice that the potential intruder still will be able to see your addresses, transactions and balance, though. It’s
also recommended to use a separate wallet for your merchant purposes (and not your main wallet).

electrum create

Still being on a protected machine, export your Master Public Key (xpub):

electrum getmpk -w .electrum/wallets/your-wallet

Now you are able to set up your electrum merchant daemon.

On the server machine restore your wallet from previously exported Master Public Key (xpub):

electrum restore xpub...

Once your read-only wallet is (re-)created, start Electrum as a daemon:

electrum daemon start
electrum daemon load_wallet

2.3.3 Add your SSL certificate to your configuration

You should have a private key and a public certificate for your domain.

Create a file that contains only the private key:

-----BEGIN PRIVATE KEY-----
your private key
-----END PRIVATE KEY-----

Set the path to your the private key file with setconfig:

electrum setconfig ssl_privkey /path/to/ssl.key

Create another file, file that contains your certificate, and the list of certificates it depends on, up to the root CA. Your
certificate must be at the top of the list, and the root CA at the end.

-----BEGIN CERTIFICATE-----
your cert
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
intermediate cert
-----END CERTIFICATE-----
-----BEGIN CERTIFICATE-----
root cert
-----END CERTIFICATE-----

Set the ssl_chain path with setconfig:

electrum setconfig ssl_chain /path/to/ssl.chain

2.3.4 Configure a requests directory

This directory must be served by your webserver (eg Apache)

2.3. How to accept Bitcoin on a website using Electrum 27

Electrum Documentation, Release 2.10

electrum setconfig requests_dir /var/www/r/

By default, electrum will display local URLs, starting with ‘file://’ In order to display public URLs, we need to set
another configuration variable, url_rewrite. For example:

electrum setconfig url_rewrite "['file:///var/www/','https://electrum.org/']"

2.3.5 Create a signed payment request

electrum addrequest 3.14 -m "this is a test"
{

"URI": "bitcoin:1MP49h5fbfLXiFpomsXeqJHGHUfNf3mCo4?amount=3.14&r=https://electrum.
→˓org/r/7c2888541a",

"address": "1MP49h5fbfLXiFpomsXeqJHGHUfNf3mCo4",
"amount": 314000000,
"amount (BTC)": "3.14",
"exp": 3600,
"id": "7c2888541a",
"index_url": "https://electrum.org/r/index.html?id=7c2888541a",
"memo": "this is a test",
"request_url": "https://electrum.org/r/7c2888541a",
"status": "Pending",
"time": 1450175741

}

This command returns a json object with two URLs:

• request_url is the URL of the signed BIP70 request.

• index_url is the URL of a webpage displaying the request.

Note that request_url and index_url use the domain name we defined in url_rewrite.

You can view the current list of requests using the ‘listrequests’ command.

2.3.6 Open the payment request page in your browser

Let us open index_url in a web browser.

28 Chapter 2. Advanced users

file://

Electrum Documentation, Release 2.10

The page shows the payment request. You can open the bitcoin: URI with a wallet, or scan the QR code. The bottom
line displays the time remaining until the request expires.

2.3. How to accept Bitcoin on a website using Electrum 29

Electrum Documentation, Release 2.10

This page can already used to receive payments. However, it will not detect that a request has been paid; for that we
need to configure websockets

2.3.7 Add web sockets support

Get SimpleWebSocketServer from here:

git clone https://github.com/ecdsa/simple-websocket-server.git

Set websocket_server and websocket_port in your config:

electrum setconfig websocket_server <FQDN of your server>

electrum setconfig websocket_port 9999

And restart the daemon:

electrum daemon stop

electrum daemon start

Now, the page is fully interactive: it will update itself when the payment is received. Please notice that higher ports
might be blocked on some client’s firewalls, so it is more safe for example to reverse proxy websockets transmission
using standard 443 port on an additional subdomain.

30 Chapter 2. Advanced users

Electrum Documentation, Release 2.10

2.3.8 JSONRPC interface

Commands to the Electrum daemon can be sent using JSONRPC. This is useful if you want to use electrum in a PHP
script.

Note that the daemon uses a random port number by default. In order to use a stable port number, you need to set the
‘rpcport’ configuration variable (and to restart the daemon):

electrum setconfig rpcport 7777

Further, starting with Electrum 3.0.5, the JSON-RPC interface is authenticated using HTTP basic auth.

The username and the password are config variables. When first started, Electrum will initialise both; the password
will be set to a random string. You can of course change them afterwards (the same way as the port, and then restart
the daemon). To simply look up their value:

electrum getconfig rpcuser
electrum getconfig rpcpassword

Note that HTTP basic auth sends the username and the password unencrypted as part of the request. While using it on
localhost is fine in our opinion, using it across an untrusted LAN or the Internet is not secure. Hence, you should take
further measures in such cases, such as wrapping the connection in a secure tunnel. For further details, read this.

After setting a static port, and configuring authentication, we can perform queries using curl or PHP. Example:

curl --data-binary '{"id":"curltext","method":"getbalance","params":[]}' http://
→˓username:password@127.0.0.1:7777

Query with named parameters:

curl --data-binary '{"id":"curltext","method":"listaddresses","params":{"funded":true}
→˓}' http://username:password@127.0.0.1:7777

Create a payment request:

curl --data-binary '{"id":"curltext","method":"addrequest","params":{"amount":"3.14",
→˓"memo":"test"}}' http://username:password@127.0.0.1:7777

2.4 How to split your coins using Electrum in case of a fork

2.4.1 Note:

This document has been updated for Electrum 2.9.

2.4.2 What is a fork?

A blockchain fork (or blockchain split) occurs when a deviating network begins to generate and maintain a conflicting
chain of blocks branching from the original, essentially creating another “version of bitcoin” or cryptocurrency, with
its very own blockchain, set of rules, and market value.

If there is a fork of the Bitcoin blockchain, two distinct currencies will coexist, having different market values.

2.4. How to split your coins using Electrum in case of a fork 31

https://developer.mozilla.org/en-US/docs/Web/HTTP/Authentication#Basic_authentication_scheme
https://bitcoin.org/en/release/v0.12.0#rpc-ssl-support-dropped

Electrum Documentation, Release 2.10

2.4.3 What does it mean to ‘split your coins’?

An address on the original blockchain will now also contain the same amount on the new chain.

If you own Bitcoins before the fork, a transaction that spends these coins after the fork will, in general, be valid on
both chains. This means that you might be spending both coins simultaneously. This is called ‘replay’. To prevent
this, you need to move your coins using transactions that differ on both chains.

2.4.4 Fork detection

Electrum (version 2.9 and higher) is able to detect consensus failures between servers (blockchain forks), and lets
users select their branch of the fork.

• Electrum will download and validate block headers sent by servers that may follow different branches of a fork in
the Bitcoin blockchain. Instead of a linear sequence, block headers are organized in a tree structure. Branching
points are located efficiently using binary search. The purpose of MCV is to detect and handle blockchain forks
that are invisible to the classical SPV model.

• The desired branch of a blockchain fork can be selected using the network dialog. Branches are identified by
the hash and height of the diverging block. Coin splitting is possible using RBF transaction (a tutorial will be
added).

This feature allows you to pick and choose which chain and network you spend on.

2.4.5 Procedure

1. Preparation

(a) Menu View Show Coins

(b) Menu Tools Preferences Propose Replace-By-Fee “Always”

2. Select a chain / network

(a) Menu Tools Network

Notice how the branches have different hashes at different heights. You can verify which chain you’re on
by using block explorers to verify the hash and height.

32 Chapter 2. Advanced users

Electrum Documentation, Release 2.10

2.4. How to split your coins using Electrum in case of a fork 33

Electrum Documentation, Release 2.10

3. Send your coins to yourself

(a) Copy your receiving address to the sending tab.

(b) Enter how many coins you’d like to split. (enter ” ! ” for ALL)

(c) Check “Replaceable”

(d) Send Sign Broadcast

4. Wait for the transaction to confirm on one network.

(a) You’ll want to switch between chains (via the network panel) to monitor the transaction status.

(b) Wait until you see the transaction confirm on one chain.

(c) Immediately use “RBF” on the unconfirmed transaction to “Increase fee”

34 Chapter 2. Advanced users

Electrum Documentation, Release 2.10

5. Wait for both chains to confirm the transaction.

6. Verify the transaction has a different TXID on each chain.

2.4. How to split your coins using Electrum in case of a fork 35

Electrum Documentation, Release 2.10

You will now have coins seperately spendable on each chain. If it failed, no harm done, you sent to yourself! Just try
again.

2.5 Using Electrum Through Tor

Please note that when using electrum through tor there are two main ways. The first way has the most Privacy but
also requires the most trust in the server you are connecting too. This is because normally Electrum connects to a
few different servers and downloads block headers and checks that they match. This prevents / makes it more difficult
for Rogue servers to send you bad information. However this can also present a privacy issue because you could be
connecting to none .onion servers for these headers.

Thus the two different options are, Connect to 1 server ONLY and get block headers and transaction info from that
server. Or Connect to 8 block header servers and connect to 1 .onion server for the general use.

2.5.1 List of Active .onion servers

Check the list here;

http://electrumserv.noip.me/onionservers.txt

If you wish to be added to this list email me at:

danielcryptos@gmail.com

36 Chapter 2. Advanced users

http://electrumserv.noip.me/onionservers.txt
mailto:danielcryptos@gmail.com

Electrum Documentation, Release 2.10

2.5.2 LINUX

2.5.3 Option 1: Single Server

Note: Please understand you are sacrificing some security here for extra privacy.

Check out https://electrum.org/#download

Grab the download from python source

Make sure you have dependencies installed

sudo apt-get install python-qt4 python-pip

Extract the electrum download;

tar -xvzf Electrum-2.*.*.tar.gz

Go into the extracted electrum folder and then run;

./electrum -1 -s electrums3lojbuj.onion:50001:t -p socks5:localhost:9050

Quick explanation,

-1 means connect to 1 server only.

-s is defining which server. You can change this to any .onion server you want. (Check the list at the top)

-p Is saying what proxy server to use to get into the tor network. Generally this will be localhost but the port bit after :
could be different.

You might need to change the port bit depending on what system you are running;

Currently The port is;

Tor Browser Bundle: 9150

General Tor (Installed): 9050

2.5.4 Option 2: Multiple servers but Tor Main

Same as above until the command to launch electrum, Remove the -1 making it

./electrum -s electrums3lojbuj.onion:50001:t -p socks5:localhost:9050

For this one you can also just launch electrum and click on the Green or Red icon on the bottom right to bring up
server information

Untick the box for Auto and enter;

electrums3lojbuj.onion

50001

Into the boxes.

At the bottom select SOCKS5 for proxy and then

localhost

9150 or 9050

2.5. Using Electrum Through Tor 37

https://electrum.org/#download

Electrum Documentation, Release 2.10

2.5.5 WINDOWS

2.5.6 Option 1: Connecting to a single Server

Install electrum from the main download page; https://electrum.org/#download

Note: Please understand you are sacrificing some security here for extra privacy.

In windows, On your desktop you will have a electrum icon. Copy and paste this to make a copy. If not you can find
the electrum folder in C:Program Files (x86)Electrum

Right click on electrum.exe and create shortcut. It will say cannot make a shortcut here make one on the desktop
instead? Ok this.

With your new shortcut or a copy of your old one Right click it and go properties, click shortcut at the top bar, in the
box named target:

It should already say something similar to what’s in between the speech bubbles. If yours is different don’t change
that bit to match.

What we want to do is add on the bit after the last speech bubble. Make a space and then enter / copy and paste.

“C:Program Files (x86)Electrumelectrum.exe” -1 -s electrums3lojbuj.onion:50001:t -p socks5:localhost:9050

Apply and Ok the change. . . You can go back to the General Tab if you want and Where it says “electrum.exe -
Shortcut” you could change that to Electrum - Tor or something

Click apply and ok again.

Now when you launch Electrum with this shortcut it will use 1 tor server only.

Quick explanation,

-1 means connect to 1 server only.

-s is defining which server. You can change this to any .onion server you want.

-p Is saying what proxy server to use to get into the tor network. Generally this will be localhost but the port bit after :
could be different.

You might need to change the port bit depending on what system you are running;

Currently The port is;

Tor Browser Bundle: 9150

General Tor (Installed): 9050

2.5.7 Option 2

In windows, On your desktop you will have a electrum icon. Copy and paste this to make a copy. If not you can find
the electrum folder in C:Program Files (x86)Electrum

Right click on electrum.exe and create shortcut. It will say cannot make a shortcut here make one on the desktop
instead? Ok this.

With your new shortcut or a copy of your old one Right click it and go properties, click shortcut at the top bar, in the
box named target:

It should already say something similar to what’s in between the speech bubbles. If yours is different don’t change
that bit to match.

What we want to do is add on the bit after the last speech bubble. Make a space and then enter / copy and paste.

38 Chapter 2. Advanced users

https://electrum.org/#download

Electrum Documentation, Release 2.10

“C:Program Files (x86)Electrumelectrum.exe” -s electrums3lojbuj.onion:50001:t -p socks5:localhost:9050

Apply and Ok the change. . . You can go back to the General Tab if you want and Where it says “electrum.exe -
Shortcut” you could change that to Electrum - Tor or something

Click apply and ok again.

Now when you launch Electrum with this shortcut it will use 1 tor server only.

You might need to change the port bit depending on what system you are running;

Currently The port is;

Tor Browser Bundle: 9150

General Tor (Installed): 9050

For this one you can also just launch electrum and click on the Green or Red icon on the bottom right to bring up
server information Untick the box for Auto and enter;

electrums3lojbuj.onion

50001

Into the boxes.

At the bottom select SOCKS5 for proxy and then

localhost

9150 or 9050

2.5. Using Electrum Through Tor 39

Electrum Documentation, Release 2.10

40 Chapter 2. Advanced users

CHAPTER 3

For developers

3.1 The Python Console

Most Electrum commands are available not only using the command-line, but also in the GUI Python console.

The results are Python objects, even though they are sometimes rendered as JSON for clarity.

Let us call listunspent(), to see the list of unspent outputs in the wallet:

>> listunspent()
[
{

"address": "12cmY5RHRgx8KkUKASDcDYRotget9FNso3",
"index": 0,
"raw_output_script": "76a91411bbdc6e3a27c44644d83f783ca7df3bdc2778e688ac",
"tx_hash": "e7029df9ac8735b04e8e957d0ce73987b5c9c5e920ec4a445130cdeca654f096",
"value": 0.01

},
{

"address": "1GavSCND6TB7HuCnJSTEbHEmCctNGeJwXF",
"index": 0,
"raw_output_script": "76a914aaf437e25805f288141bfcdc27887ee5492bd13188ac",
"tx_hash": "b30edf57ca2a31560b5b6e8dfe567734eb9f7d3259bb334653276efe520735df",
"value": 9.04735316

}
]

Note that the result is rendered as JSON. However, if we save it to a Python variable, it is rendered as a Python object:

>> u = listunspent()
>> u
[{'tx_hash': u'e7029df9ac8735b04e8e957d0ce73987b5c9c5e920ec4a445130cdeca654f096',
→˓'index': 0, 'raw_output_script': '76a91411bbdc6e3a27c44644d83f783ca7df3bdc2778e688ac
→˓', 'value': 0.01, 'address': '12cmY5RHRgx8KkUKASDcDYRotget9FNso3'}, {'tx_hash': u
→˓'b30edf57ca2a31560b5b6e8dfe567734eb9f7d3259bb334653276efe520735df', 'index': 0,
→˓'raw_output_script': '76a914aaf437e25805f288141bfcdc27887ee5492bd13188ac', 'value':
→˓9.04735316, 'address': '1GavSCND6TB7HuCnJSTEbHEmCctNGeJwXF'}]

41

Electrum Documentation, Release 2.10

This makes it possible to combine Electrum commands with Python. For example, let us pick only the addresses in
the previous result:

>> map(lambda x:x.get('address'), listunspent())
[
"12cmY5RHRgx8KkUKASDcDYRotget9FNso3",
"1GavSCND6TB7HuCnJSTEbHEmCctNGeJwXF"

]

Here we combine two commands, listunspent and dumpprivkeys, in order to dump the private keys of all adresses that
have unspent outputs:

>> dumpprivkeys(map(lambda x:x.get('address'), listunspent()))
{
"12cmY5RHRgx8KkUKASDcDYRotget9FNso3":
→˓"***",
"1GavSCND6TB7HuCnJSTEbHEmCctNGeJwXF":
→˓"***"
}

Note that dumpprivkey will ask for your password if your wallet is encrypted. The GUI methods can be accessed
through the gui variable. For example, you can display a QR code from a string using gui.show_qrcode. Example:

gui.show_qrcode(dumpprivkey(listunspent()[0]['address']))

3.2 Simple Payment Verification

Simple Payment Verification (SPV) is a technique described in Satoshi Nakamoto’s paper. SPV allows a lightweight
client to verify that a transaction is included in the Bitcoin blockchain, without downloading the entire blockchain.
The SPV client only needs download the block headers, which are much smaller than the full blocks. To verify that a
transaction is in a block, a SPV client requests a proof of inclusion, in the form of a Merkle branch.

SPV clients offer more security than web wallets, because they do not need to trust the servers with the information
they send.

Reference: Bitcoin: A peer-to-peer Electronic Cash System

3.3 Electrum Seed Version System

This document describes the Seed Version System used in Electrum (version 2.0 and higher).

3.3.1 Description

Electrum derives its private keys and addresses from a seed phrase made of natural language words. Starting with
version 2.0, Electrum seed phrases include a version number, whose purpose is to indicate which derivation should be
followed in order to derive private keys and addresses.

In order to eliminate the dependency on a fixed wordlist, the master private key and the version number are both
obtained by hashes of the UTF8 normalized seed phrase. The version number is obtained by looking at the first bits
of:

42 Chapter 3. For developers

http://bitcoin.org/bitcoin.pdf

Electrum Documentation, Release 2.10

hmac_sha_512("Seed version", seed_phrase)

The version number is also used to check seed integrity; in order to be correct, a seed phrase must produce a registered
version number.

3.3.2 Motivation

Early versions of Electrum (before 2.0) used a bidirectional encoding between seed phrase and entropy. This type of
encoding requires a fixed wordlist. This means that future versions of Electrum must ship with the exact same wordlist,
in order to be able to read old seed phrases.

BIP39 was introduced two years after Electrum. BIP39 seeds include a checksum, in order to help users figure out
typing errors. However, BIP39 suffers the same shortcomings as early Electrum seed phrases:

• A fixed wordlist is still required. Following our recommendation, BIP39 authors decided to derive keys and
addresses in a way that does not depend on the wordlist. However, BIP39 still requires the wordlist in order
to compute its checksum, which is plainly inconsistent, and defeats the purpose of our recommendation. This
problem is exacerbated by the fact that BIP39 proposes to create one wordlist per language. This threatens the
portability of BIP39 seed phrases.

• BIP39 seed phrases do not include a version number. This means that software should always know how to
generate keys and addresses. BIP43 suggests that wallet software will try various existing derivation schemes
within the BIP32 framework. This is extremely inefficient and rests on the assumption that future wallets
will support all previously accepted derivation methods. If, in the future, a wallet developer decides not to
implement a particular derivation method because it is deprecated, then the software will not be able to detect
that the corresponding seed phrases are not supported, and it will return an empty wallet instead. This threatens
users funds.

For these reasons, Electrum does not generate BIP39 seeds. Starting with version 2.0, Electrum uses the following
Seed Version System, which addresses these issues.

Electrum 2.0 derives keys and addresses from a hash of the UTF8 normalized seed phrase with no dependency on a
fixed wordlist. This means that the wordlist can differ between wallets while the seed remains portable, and that future
wallet implementations will not need today’s wordlists in order to be able to decode the seeds created today. This
reduces the cost of forward compatibility.

3.3.3 Version number

The version number is a prefix of a hash derived from the seed phrase. The length of the prefix is a multiple of 4 bits.
The prefix is computed as follows:

def version_number(seed_phrase):
normalize seed
normalized = prepare_seed(seed_phrase)
compute hash
h = hmac_sha_512("Seed version", normalized)
use hex encoding, because prefix length is a multiple of 4 bits
s = h.encode('hex')
the length of the prefix is written on the fist 4 bits
for example, the prefix '101' is of length 4*3 bits = 4*(1+2)
length = int(s[0]) + 2
read the prefix
prefix = s[0:length]
return version number
return hex(int(prefix, 16))

3.3. Electrum Seed Version System 43

Electrum Documentation, Release 2.10

The normalization function (prepare_seed) removes all but one space between words. It also removes diacritics, and
it removes spaces between Asian CJK characters.

3.3.4 List of reserved numbers

The following version numbers are used for Electrum seeds.

Number Type Description
0x01 Standard P2PKH and Multisig P2SH wallets
0x100 Segwit Segwit: P2WPKH and P2WSH wallets
0x101 2FA Two-factor authenticated wallets

In addition, the version bytes of master public/private keys indicate what type of output script should be used. The
following prefixes are used for master public keys:

Version Prefix Description
0x0488b21e xpub P2PKH or P2SH
0x049d7cb2 ypub P2WPKH in P2SH
0x0295b43f Ypub P2WSH in P2SH
0x04b24746 zpub P2WPKH
0x02aa7ed3 Zpub P2WSH

And for master private keys:

Version Prefix Description
0x0488ade4 xprv P2PKH or P2SH
0x049d7878 yprv P2WPKH in P2SH
0x0295b005 Yprv P2WSH in P2SH
0x04b2430c zprv P2WPKH
0x02aa7a99 Zprv P2WSH

3.3.5 Seed generation

When the seed phrase is hashed during seed generation, the resulting hash must begin with the correct version number
prefix. This is achieved by enumerating a nonce and re-hashing the seed phrase until the desired version number is
created. This requirement does not decrease the security of the seed (up to the cost of key stretching, that might be
required to generate the private keys).

3.3.6 Security implications

Electrum currently use the same wordlist as BIP39 (2048 words). A typical seed has 12 words, which results in 132
bits of entropy in the choice of the seed.

Following BIP39, 2048 iterations of key stretching are added for the generation of the master private key. In terms of
hashes, this is equivalent to adding an extra 11 bits of security to the seed (2048=2^11).

From the point of view of an attacker, the constraint added by imposing a prefix to the seed version hash does not
decrease the entropy of the seed, because there is no knowledge gained on the seed phrase. The attacker still needs to
enumerate and test 2^n candidate seed phrases, where n is the number of bits of entropy used to generate the seed.

44 Chapter 3. For developers

Electrum Documentation, Release 2.10

However, the test made by the attacker will return faster if the candidate seed is not a valid seed, because the attacker
does not need to generate the key. This means that the imposed prefix reduces the strength of key stretching.

Let n denote the number of entropy bits of the seed, and m the number of bits of difficulty added by key stretching: m
= log2(stretching_iterations). Let k denote the length of the prefix, in bits.

On each iteration of the attack, the probability to obtain a valid seed is p = 2^-k

The number of hashes required to test a candidate seed is: p * (1+2^m) + (1-p)*1 = 1 + 2^(m-k)

Therefore, the cost of an attack is: 2^n * (1 + 2^(m-k))

This can be approximated as 2^(n + m - k) if m>k and as 2^n otherwise.

With the standard values currently used in Electrum, we obtain: 2^(132 + 11 - 8) = 2^135. This means that a standard
Electrum seed is equivalent, in terms of hashes, to 135 bits of entropy.

3.4 Electrum protocol specification

Stratum is a universal bitcoin communication protocol used mainly by bitcoin client Electrum and miners.

3.4.1 Format

Stratum protocol is based on JSON-RPC 2.0 (although it doesn’t include “jsonrpc” information in every message).
Each message has to end with a line end character (n).

Request

Typical request looks like this:

{ "id": 0, "method":"some.stratum.method", "params": [] }

• id begins at 0 and every message has its unique id number

• list and description of possible methods is below

• params is an array, e.g.: [“1myfirstaddress”, “1mysecondaddress”, “1andonemoreaddress”]

Response

Responses are similar:

{ "id": 0, "result": "616be06545e5dd7daec52338858b6674d29ee6234ff1d50120f060f79630543c
→˓"}

• id is copied from the request message (this way client can pair each response to one of his requests)

• result can be:

– null

– a string (as shown above)

– a hash, e.g.:

{ "nonce": 1122273605, "timestamp": 1407651121, "version": 2, "bits":
→˓406305378 }

3.4. Electrum protocol specification 45

http://www.jsonrpc.org/specification

Electrum Documentation, Release 2.10

– an array of hashes, e.g.:

[{ "tx_hash:
"b87bc42725143f37558a0b41a664786d9e991ba89d43a53844ed7b3752545d4f",
"height": 314847 }, { "tx_hash":
"616be06545e5dd7daec52338858b6674d29ee6234ff1d50120f060f79630543c",
"height": 314853 }]

3.4.2 Methods

server.version

This is usually the first client’s message, plus it’s sent every minute as a keep-alive message. Client sends its own
version and version of the protocol it supports. Server responds with its supported version of the protocol (higher
number at server-side is usually compatible).

The version of the protocol being explained in this documentation is: 0.10.

request:

{ "id": 0, "method": "server.version", "params": ["1.9.5", "0.6"] }

response:

{ "id": 0, "result": "0.8" }

server.banner

request:

{ "id": 1, "method": "server.banner", "params": [] }

server.donation_address

server.peers.subscribe

Client can this way ask for a list of other active servers. Servers are connected to an IRC channel (#electrum at
freenode.net) where they can see each other. Each server announces its version, history pruning limit of every address
(“p100”, “p10000” etc.–the number means how many transactions the server may keep for every single address) and
supported protocols (“t” = tcp@50001, “h” = http@8081, “s” = tcp/tls@50002, “g” = https@8082; non-standard port
would be announced this way: “t3300” for tcp on port 3300).

Note: At the time of writing there isn’t a true subscription implementation of this method, but servers only send
one-time response. They don’t send notifications yet.

request:

{ "id": 3, "method":
"server.peers.subscribe", "params": [] }

response:

46 Chapter 3. For developers

mailto:tcp@50001
mailto:http@8081
mailto:tcp/tls@50002
mailto:https@8082

Electrum Documentation, Release 2.10

{ "id": 3, "result": [["83.212.111.114",
"electrum.stepkrav.pw", ["v0.9", "p100", "t", "h", "s",
"g"]], ["23.94.27.149", "ultra-feather.net", ["v0.9",
"p10000", "t", "h", "s", "g"]], ["88.198.241.196",
"electrum.be", ["v0.9", "p10000", "t", "h", "s", "g"]]]
}

blockchain.numblocks.subscribe

A request to send to the client notifications about new blocks height. Responds with the current block height.

request:

{ "id": 5, "method":
"blockchain.numblocks.subscribe", "params": [] }

response:

{ "id": 5, "result": 316024 }

message:

{ "id": null, "method":
"blockchain.numblocks.subscribe", "params": 316024 }

blockchain.headers.subscribe

A request to send to the client notifications about new blocks in form of parsed blockheaders.

request:

{ "id": 5, "method":
"blockchain.headers.subscribe", "params": [] }

response:

{ "id": 5, "result": { "nonce":
3355909169, "prev_block_hash":
"00000000000000002b3ef284c2c754ab6e6abc40a0e31a974f966d8a2b4d5206",
"timestamp": 1408252887, "merkle_root":
"6d979a3d8d0f8757ed96adcd4781b9707cc192824e398679833abcb2afdf8d73",
"block_height": 316023, "utxo_root":
"4220a1a3ed99d2621c397c742e81c95be054c81078d7eeb34736e2cdd7506a03",
"version": 2, "bits": 406305378 } }

message:

{ "id": null, "method":
"blockchain.headers.subscribe", "params": [{ "nonce":
881881510, "prev_block_hash":
"00000000000000001ba892b1717690900ae476857120a78fb50825f8b67a42d4",
"timestamp": 1408255430, "merkle_root":
"8e92bdbf1c5c581b5942fc290c6c52c586f091b279ea79d4e21460e138023839",
"block_height": 316024, "utxo_root":
"060f780c0dd07c4289aaaa2ef24723f73380095b31d60795e1308170ec742ffb",
"version": 2, "bits": 406305378 }] }

3.4. Electrum protocol specification 47

Electrum Documentation, Release 2.10

blockchain.address.subscribe

A request to send to the client notifications when status (i.e., transaction history) of the given address changes. Status
is a hash of the transaction history. If there isn’t any transaction for the address yet, the status is null.

request:

{ "id": 6, "method":"blockchain.address.subscribe", "params": [
→˓"1NS17iag9jJgTHD1VXjvLCEnZuQ3rJDE9L"] }

response:

{ "id": 6, "result":"b87bc42725143f37558a0b41a664786d9e991ba89d43a53844ed7b3752545d4f
→˓" }

message:

{ "id": null, "method":"blockchain.address.subscribe", "params": [
→˓"1NS17iag9jJgTHD1VXjvLCEnZuQ3rJDE9L",
→˓"690ce08a148447f482eb3a74d714f30a6d4fe06a918a0893d823fd4aca4df580"]}

blockchain.address.get_history

For a given address a list of transactions and their heights (and fees in newer versions) is returned.

request:

{"id": 1, "method": "blockchain.address.get_history", "params": [
→˓"1NS17iag9jJgTHD1VXjvLCEnZuQ3rJDE9L"] }

response:

{"id": 1, "result": [{"tx_hash":
→˓"ac9cd2f02ac3423b022e86708b66aa456a7c863b9730f7ce5bc24066031fdced", "height":
→˓340235}, {"tx_hash":
→˓"c4a86b1324f0a1217c80829e9209900bc1862beb23e618f1be4404145baa5ef3", "height":
→˓340237}]}
{"jsonrpc": "2.0", "id": 1, "result": [{"tx_hash":
→˓"16c2976eccd2b6fc937d24a3a9f3477b88a18b2c0cdbe58c40ee774b5291a0fe", "height": 0,
→˓"fee": 225}]}

blockchain.address.get_mempool

blockchain.address.get_balance

request:

{ "id": 1, "method":"blockchain.address.get_balance", "params":[
→˓"1NS17iag9jJgTHD1VXjvLCEnZuQ3rJDE9L"] }

response:

{"id": 1, "result": {"confirmed": 533506535, "unconfirmed": 27060000}}

48 Chapter 3. For developers

Electrum Documentation, Release 2.10

blockchain.address.get_proof

blockchain.address.listunspent

request:

{ "id": 1, "method":
"blockchain.address.listunspent", "params":
["1NS17iag9jJgTHD1VXjvLCEnZuQ3rJDE9L"] }

response:

{"id": 1, "result": [{"tx_hash":
"561534ec392fa8eebf5779b233232f7f7df5fd5179c3c640d84378ee6274686b",
"tx_pos": 0, "value": 24990000, "height": 340242},
{"tx_hash":"620238ab90af02713f3aef314f68c1d695bbc2e9652b38c31c025d58ec3ba968",
"tx_pos": 1, "value": 19890000, "height": 340242}]}

blockchain.utxo.get_address

blockchain.block.get_header

blockchain.block.get_chunk

blockchain.transaction.broadcast

Submits raw transaction (serialized, hex-encoded) to the network. Returns transaction id, or an error if the transaction
is invalid for any reason.

request:

{ "id": 1, "method":
"blockchain.transaction.broadcast", "params":

→˓"0100000002f327e86da3e66bd20e1129b1fb36d07056f0b9a117199e759396526b8f3a20780000000000fffffffff0ede03d75050f20801d50358829ae02c058e8677d2cc74df51f738285013c260000000000ffffffff02f028d6dc010000001976a914ffb035781c3c69e076d48b60c3d38592e7ce06a788ac00ca9a3b000000001976a914fa5139067622fd7e1e722a05c17c2bb7d5fd6df088ac00000000
→˓" }

response:

{"id": 1, "result": "561534ec392fa8eebf5779b233232f7f7df5fd5179c3c640d84378ee6274686b
→˓"}

blockchain.transaction.get_merkle

blockchain.transaction.get_merkle [$txid, $txHeight]

blockchain.transaction.get

Method for obtaining raw transaction (hex-encoded) for given txid. If the transaction doesn’t exist, an error is returned.

request:

3.4. Electrum protocol specification 49

Electrum Documentation, Release 2.10

{ "id": 17, "method":"blockchain.transaction.get", "params": [
"0e3e2357e806b6cdb1f70b54c3a3a17b6714ee1f0e68bebb44a74b1efd512098"
] }

response:

{ "id": 17, "result":
→˓"010000000100ffffffff0704ffff001d0104ffffffff0100f2052a0100000043410496b538e853519c726a2c91e61ec11600ae1390813a627c66fb8be7947be63c52da7589379515d4e0a604f8141781e62294721166bf621e73a82cbf2342c858eeac00000000
→˓"}

error:

{ "id": 17, "error": "{ u'message': u'No information available about transaction', u
→˓'code': -5 }" }

blockchain.estimatefee

Estimates the transaction fee per kilobyte that needs to be paid for a transaction to be included within a certain number
of blocks. If the node doesn’t have enough information to make an estimate, the value -1 will be returned.

Parameter: How many blocks the transaction may wait before being included.

request:

{ "id": 17, "method": "blockchain.estimatefee", "params": [6] }

response:

{ "id": 17, "result": 0.00026809 }
{ "id": 17, "result": 1.169e-05 }

error:

{ "id": 17, "result": -1 }

3.4.3 External links

• https://docs.google.com/a/palatinus.cz/document/d/17zHy1SUlhgtCMbypO8cHgpWH73V5iUQKk_
0rWvMqSNs/edit?hl=en_US” original Slush’s specification of Stratum protocol

• http://mining.bitcoin.cz/stratum-mining specification of Stratum mining extension

3.5 Serialization of unsigned or partially signed transactions

Electrum 2.0 uses an extended serialization format for transactions. The purpose of this format is to send unsigned
and partially signed transactions to cosigners or to cold storage.

This is achieved by extending the ‘pubkey’ field of a transaction input.

50 Chapter 3. For developers

https://docs.google.com/a/palatinus.cz/document/d/17zHy1SUlhgtCMbypO8cHgpWH73V5iUQKk_0rWvMqSNs/edit?hl=en_US
https://docs.google.com/a/palatinus.cz/document/d/17zHy1SUlhgtCMbypO8cHgpWH73V5iUQKk_0rWvMqSNs/edit?hl=en_US
http://mining.bitcoin.cz/stratum-mining

Electrum Documentation, Release 2.10

3.5.1 Extended public keys

The first byte of the pubkey indicates if it is an extended pubkey:

• 0x02, 0x03, 0x04: legal Bitcoin public key (compressed or not).

• 0xFF, 0xFE, 0xFD: extended public key.

Extended public keys are of 3 types:

• 0xFF: bip32 xpub and derivation

• 0xFE: legacy electrum derivation: master public key + derivation

• 0xFD: unknown pubkey, but we know the Bitcoin address.

3.5.2 Public key

This is the legit Bitcoin serialization of public keys.

0x02 or 0x03 compressed public key (32 bytes)
0x04 uncompressed public key (64 bytes)

3.5.3 BIP32 derivation

0xFF xpub (78 bytes) bip32 derivation (2*k bytes)

3.5.4 Legacy Electrum Derivation

0xFE mpk (64 bytes) derivation (4 bytes)

3.5.5 Bitcoin address

Used if we don’t know the public key, but we know the address (or the hash 160 of the output script). The cosigner
should know the public key.

0xFD hash_160_of_script (20 bytes)

3.5. Serialization of unsigned or partially signed transactions 51

	GUI and beginners
	Frequently Asked Questions
	Invoices
	Two Factor Authentication
	Multisig Wallets
	Cold Storage

	Advanced users
	Command Line
	Using cold storage with the command line
	How to accept Bitcoin on a website using Electrum
	How to split your coins using Electrum in case of a fork
	Using Electrum Through Tor

	For developers
	The Python Console
	Simple Payment Verification
	Electrum Seed Version System
	Electrum protocol specification
	Serialization of unsigned or partially signed transactions

